

Matt Small, Ph.D., R.G. U.S. EPA Region 9

Acknowledgments

- Ray Saracino, EPA Region 9
- Kathy Baylor, EPA Region 9
- Mary Blevins, EPA Region 9
- Contractors, CH2MHILL
- Jim Weaver, EPA ORD
- Hun Seak Park, Washington State DOE
- Jonathan Leong, EPA Region 9

Background

- JACADS (Johnston Atoll Chemical Agency Disposal System) Facility
 - 800 miles southwest of Hawaii
 - Incineration/destruction of 4 million pounds of chemical agents and weapons
 - Incineration completed November 2000
 - Multiple contaminants including petroleum

Background

- September 2002, EPA approved the Army's Revised Closure Plan
 - Green light to proceed with facility closure
 - Return JACADS to conditions safe for people, birds and marine life
- Closure plan includes petroleum hydrocarbon remediation

Site-Specific Eco-Risk Based Total Petroleum Hydrocarbons (TPH) Cleanup Goals

- Cleanup criteria:
 - No mobile free product
 - Individual compound (BTEX and PAH) concentrations below cleanup goals
 - TPH below cleanup goals
- Ecosystem is the principle receptor:
 - Discharge of ground water to marine receptors
 - Direct avian exposure to contaminated soil

Site-Specific Eco-Risk Based TPH Cleanup Goals

- The challenge:
 - Develop site-specific eco-risk based cleanup goals for a mixture of hydrocarbons (TPH) in soil and ground water
 - Ground water cleanup goals to protect marine environment
 - Soil cleanup goals to protect ground water
 - Soil cleanup goals to protect direct eco-receptor exposure
 - Soil cleanup goals to protect direct human exposure
 - Soil cleanup goals to prevent product migration

Discharge of Groundwater to Marine Environment (Lagoon)

- Ground Water action level of 0.640 mg/l adapted from studies in San Francisco Bay
 - Mysidopsis bahia, invertebrate
 - The toxicity test used chronic exposure
 - Endpoint included sub lethal effect (growth)
 - Organisms exposed to fresh Jet Fuel rather than weathered (less toxic?) petroleum.

Discharge of Groundwater to Marine Environment (Lagoon)

- GW concentration data should be adjusted using a Dilution Attenuation Factor (DAF) to estimate GW concentrations at the shoreline.
- Issue:
 - Model is sensitive to DAF
- Resolution:
 - Consider range of DAFs
 - Further evaluate methods for determining DAF
 - Attenuation factor added to EPA DAF?
- Dilution attenuation factor:
 - DAF = 1 for locations ≤ 100 ft from shoreline
 - DAF = 1/distance for locations > 100 ft

$$DAF = \left(1 + \frac{Kid}{IL}\right) \exp\left[-kt_R\right] \qquad t_R = R\frac{L}{Ki}$$

Soil Cleanup Goals to Protect Ground Water

- Based upon site-specific synthetic precipitation leaching potential test
 - "worst case" leaching potential
- Relatively low solubility compounds
- Site specific Cleanup goal of 30,000 mg/kg in soil would not be expected to impact ground water above 0.640 mg/l
- The previous default TPH action levels was 5,000 mg/kg in subsurface soil

				T49-TP101	T49-TP104
	Method	Analyte	Units	11/13/03	11/13/03
		C10-C12 Aliphatics	mg/L	0.002 U	0.005 F
		C10-C12 Aromatics	mg/L	0.007 F	0.069
	NWTPH-EPH	C12-C16 Aliphatics	mg/L	0.010 U	0.013 F
		C12-C16 Aromatics	mg/L	0.010 U	0.274
	NWTPH-EPH	C16-C21 Aliphatics	mg/L	0.010 U	0.014 F
Fractional	NWTPH-EPH	C16-C21 Aromatics	mg/L	0.010 U	0.121
	NWTPH-EPH	C21-C34 Aliphatics	mg/L	0.010 U	0.011 U
Analysis \	NWTPH-EPH	C21-C34 Aromatics	mg/L	0.010 U	0.011 U
	NWTPH-EPH	Total Extractable Petroleum Hydrocarbons	mg/L	0.071 F	0.495
	NWTPH-VPH	C12-C13 Aromatics	mg/L	0.007 F	0.014 F
	NWTPH-VPH	C5-C6 Aliphatics	mg/L	0.001 U	0.001 U
	NWTPH-VPH	C6-C8 Aliphatics	mg/L	0.001 U	0.001 U
	NWTPH-VPH	C8-C10 Aliphatics	mg/L	0.002 U	0.002 U
	NWTPH-VPH	C8-C10 Aromatics	mg/L	0.003 U	0.003 U
	NWTPH-VPH	Total Volatile Petroleum Hydrocarbons	mg/L	0.014 F	0.020 F
	NWTPHGx	Gasoline-Range Hydrocarbons	mg/L	0.013 F	0.031 F
0015	NWTPHDX	Diesel-Range Hydrocarbons	mg/L	0.477 J	5.51 J
8015	NWTPHDX	Lube Oil Range Hydrocarbons	mg/L	0.309 F	0.284 F
	NWTPHDX	Diesel-Range Hydrocarbons with SGCU	mg/L	0.054 U	0.693
	NWTPHDX	Lube Oil Range Hydrocarbons with SGCU	mg/L	0.110 U	0.11 U
	Total TPH Calc	A (detects NWTPHDx + NWTPHGx)	mg/L	0.799	5.825
	Total TPH Calc	B (detects NWTPHDx SGCU+ NWTPHGx)	mg/L	0.1771 ^a	0.8344ª
	Total TPH Calc	C (detects NWTPH-EPH + NWTPH-VPH)	mg/L	0.085	0.515

Notes:

mg/L = milligram per liter SGCU = silica gel cleanup

- U The analyte was not detected at the concentration listed.
- J The analyte was positively identified; the quantitation is an estimation.
- F The analyte was positively identified but the associated numerical value is below the reporting limit.

^a Calculated assuming nondetects were present at the limit of detection.

Soil Cleanup Goals to Protect Direct Eco-Receptor Exposure

- Fractional analysis of TPH to determine composition
- Eco-risk evaluated using fractional toxicity

$$ERBC = \frac{BW \times TRV}{\sum \left[\left(Frac_{s} \times DFI \right) + \left(Frac_{p} \times DFI \times B_{s/p} \right) \right] \times AUF}$$

$$Ecol.ActionLevel = \frac{1}{\left(\frac{1}{ERBC_{ss}}\right)_{frac1} + \left(\frac{1}{ERBC_{ss}}\right)_{frac2} +\left(\frac{1}{ERBC_{ss}}\right)_{fracN}}$$

where:

ERBC = Ecological risk-based concentration in soil (mg/kg)
TRV = Toxicity reference value (mg/kg body weight-day)
Fracs = Fraction of diet represented by incidentally ingested soil (unitless)

DFI = Daily ingestion rate of all food items (kg/day wet weight)

BW = Body weight of wildlife receptor (kg)

Fracp = Fraction of diet represented by prey (unitless)

AUF = Area use factor; fraction of home range occupied by site (unitless)

Bs/p = Soil-to-prey biotransfer factor (mg/kg per mg/kg wet weight)

Soil Cleanup Goals to Protect Direct Human Exposure

- Fractional analysis of TPH to determine composition
- Human risk evaluated using fractional toxicity

$$RBC = \frac{THQ \times BW_a \times ATN \times 365 \ days \ / \ year}{EF \times ED_a \Bigg[\Bigg[\frac{1}{RfD_o} \times CF \times IR_a \Bigg] + \Bigg[\frac{1}{RfD_d} \times CF \times SA_a \times AF \times ABS_d \Bigg] + \Bigg[\Bigg[\frac{1}{VF} \ or \ \frac{1}{PEF} \Bigg] \times Inh_a \times \frac{1}{RfD_i} \Bigg] \Bigg]}$$

ABSd = Skin absorption fraction (unitless)

ATN = Averaging time for noncarcinogens (years)

CF = Unit conversion factor (10-6 mg/kg)

EF = Exposure frequency (days/year)

IRa = Adult soil ingestion rate (mg/day)

RBC = Human health risk-based cleanup level for soil (mg/kg)

RfDo = Oral reference dose (mg/kg-day)

THQ = Target hazard quotient (unitless)

RfDd = Dermal reference dose (adjusted oral reference dose)

(mg/kg-day)

AF = Soil-to-skin adherence factor (mg/cm2)

BWa = Adult body weight (kg)

EDa = Adult exposure duration (years)

Inha = Adult inhalation rate (m3/day)

PEF = Particulate emission factor (m3/kg)

RfDI = Inhalation reference dose (mg/kg-day)

SAa = Adult skin surface area exposed (cm2)

VF = Volatilization factor (m3/kg)

NAPL Mobility

 Residual non-aqueous phase liquid (NAPL) saturation calculated for Johnston Atoll soils

$$C_{\text{res,soil}} = ((\Theta_0 \times \rho_0)/\rho_s) \times 10^6$$

$$\Theta_{o} = S_{r} \times \Theta_{T}$$

Seepage velocity = $(k \times k_{LNAPL} \times \rho_{LNAPL} \times g)/(\mu_{LNAPL} \times n \times S_{LNAPL}) \times (dh_{LNAPL}/dl_{LNAPL})$

```
C<sub>res,soil</sub> = residual NAPL concentration in soil
                                                                                   Permeability of porous media
                                                            k =
                                                                                    Relative permeability of the porous media to LNAPL
                                                            k_{rLNAPL} =
      = residual nonaqueous-phase volume fraction
Θο
                                                                                    Density of the LNAPL
                                                            \rho_{LNAPL} =
      = density of chemical residual nonaqueous-phase liquid
                                                            g =
                                                                                   Gravitational constant
                                                                                   Viscosity of the LNAPL
                                                            \mu_{LNAPL} =
      = dry soil density
\rho_s
                                                            N =
                                                                                   Porosity
      = soil porosity
                                                                                   Fraction of the pore space filled with LNAPL
                                                            S_{LNAPL} =
      = fraction of residual nonaqueous-phase filled void
```

dh_{LNAPL}/dl_{LNAPL} = LNAPL head, using LNAPL thickness in 3 wells

Soil Action Levels

- Multiple exposure pathways:
 - Groundwater protection 30,000 to 40,000 mg/kg
 - Direct soil contact by eco-receptors 73,000 to 161,000 mg/kg
 - Direct soil contact by human receptors.33,000 to 71, 000 mg/kg
 - Free product mobility 13,074 to 22,560 mg/kg

Soil Action Levels

 Soil Action level = 17,181 mg/kg based upon mobility limits (previously 2,000-5,000 mg/kg for surface/subsurface)

Other Issues

- Silica gel cleanup
- Disagreement between TPH concentrations measured fractional analysis and 8015
- Dilution Attenuation Factor

Silica Gel Cleanup

NWTPH-Dx without Silica Gel Cleanup

NWTPH-Dx with Silica Gel Cleanup

Disagreement Between TPH Analytical Methods

Sample	Units	Distance to Lagoon (ft)
FW-MW03D-1103	mg/L	1114
SWM-MW20-1103	mg/L	701
SWM-MW21-1103	mg/L	638
SWM-MW22-1103	mg/L	957
T49-FD1-1103 ^a	mg/L	386
T49-MW15-1103	mg/L	386
T49-MW05-1103	mg/L	30
T49-MW06-1103	mg/L	306
T49-MW07-1103	mg/L	280

_	
	Dilution
١	Attenuation
١	Factor
	(distance/100)
	11.14
	7.01
	6.38
	9.57
	3.86
	3.86
	1
	3.06
	2.8

Total TPH A divided by DAF
0.164
0.231
0.272
0.182
3.060
1.915
0.498
0.444
1.940

Total TPH B
(SGCU)
divided by
DAF
0.023
0.124
0.063
0.087
1.036
0.515
0.213
0.487
0.118

Total TPH C (fractionation) divided by DAF 0.023 0.096 0.057 0.058 0.150 0.140 0.227 0.332 0.149	
0.023 0.096 0.057 0.058 0.150 0.140 0.227 0.332	(fractionation)
0.096 0.057 0.058 0.150 0.140 0.227 0.332	divided by DAF
0.057 0.058 0.150 0.140 0.227 0.332	0.023
0.058 0.150 0.140 0.227 0.332	0.096
0.150 0.140 0.227 0.332	0.057
0.140 0.227 0.332	0.058
0.227 0.332	0.150
0.332	0.140
	0.227
0.149	0.332
	0.149

Notes:

Bold and shading indicates value is greater than 0.64-mg/L action level.

Total TPH A = Sum of detected NWTPH-Gx, NWTPH-Dx diesel, and NWTPH-Dx lube oil

Total TPH B = Sum of detected NWTPH-Gx, NWTPH-Dx SGCU diesel, and NWTPH-Dx SGCU lube oil

Total TPH C = Sum of NWTPH-VPH and NWTPH-EPH.

mg/L = milligram per liter

SGCU = silica gel cleanup

TPH = total petroleum hydrocarbons

Field duplicate of sample T49-MW15-1103.

Conclusions

- Successfully developed site specific riskbased TPH clean up goals
- Helped move site toward closure safely and quickly
- Created model for future applications
- Identified questions for additional investigations

More Information

EPA Region 9 JACADS Web Site

http://www.epa.gov/region09/features/jacads/index.html

SWMU 16, AOC1

Figure 3-1
TPH Sample Locations at SWMU No. 16/AOC No. 1

TPH ACTION LEVEL DERIVATION REPORT JOHNSTON ATOLL